On orthogonal polynomials obtained via polynomial mappings

نویسندگان

  • M. N. de Jesus
  • J. Petronilho
چکیده

Let (pn)n be a given monic orthogonal polynomial sequence (OPS) and k a fixed positive integer number such that k ≥ 2. We discuss conditions under which this OPS originates from a polynomial mapping in the following sense: to find another monic OPS (qn)n and two polynomials πk and θm , with degrees k and m (resp.), with 0 ≤ m ≤ k − 1, such that pnk+m(x) = θm(x)qn(πk(x)) (n = 0, 1, 2, . . .). In this work we establish algebraic conditions for the existence of a polynomial mapping in the above sense. Under such conditions, when (pn)n is orthogonal in the positive-definite sense, we consider the corresponding inverse problem, giving explicitly the orthogonality measure for the given OPS (pn)n in terms of the orthogonality measure for the OPS (qn)n . Some applications and examples are presented, recovering several known results in a unified way. c ⃝ 2010 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Set of Orthogonal Polynomials Induced by a Given Orthogonal Polynomial

Given an integer n ~ 1, and the orthogonal polynomial1rn (· ; du) of degree n relative to some positive measure du, the polynomial system "induced" by 1rn is the system of orthogonal polynomials {7rk,n} corresponding to the modified measure dUn = 1r~du. Our interest here is in the problem of determining the coefficients in the three-term recurrence relation for the polynomials 7rk,n from the re...

متن کامل

Compositional inverses, complete mappings, orthogonal Latin squares and bent functions

We study compositional inverses of permutation polynomials, complete map-pings, mutually orthogonal Latin squares, and bent vectorial functions. Recently it was obtained in [33] the compositional inverses of linearized permutation binomials over finite fields. It was also noted in [29] that computing inverses of bijections of subspaces have applications in determining the compositional inverses...

متن کامل

Numerical solution of delay differential equations via operational matrices of hybrid of block-pulse functions and Bernstein polynomials

In this paper, we introduce hybrid of block-pulse functions and Bernstein polynomials and derive operational matrices of integration, dual, differentiation, product and delay of these hybrid functions by a general procedure that can be used for other polynomials or orthogonal functions. Then, we utilize them to solve delay differential equations and time-delay system. The method is based upon e...

متن کامل

Sensitivity analysis for Szegő polynomials

Szegő polynomials are orthogonal with respect to an inner product on the unit circle. Numerical methods for weighted least-squares approximation by trigonometric polynomials conveniently can be derived and expressed with the aid of Szegő polynomials. This paper discusses the conditioning of several mappings involving Szegő polynomials and, thereby, sheds light on the sensitivity of some approxi...

متن کامل

Five-diagonal Matrices and Zeros of Orthogonal Polynomials on the Unit Circle

It is shown that monic orthogonal polynomials on the unit circle are the characteristic polynomials of certain five-diagonal matrices depending on the Schur parameters. This result is achieved through the study of orthogonal Laurent polynomials on the unit circle. More precisely, it is a consequence of the five term recurrence relation obtained for these orthogonal Laurent polynomials, and the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 162  شماره 

صفحات  -

تاریخ انتشار 2010